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Abstract

A program is described which enables performing of genetic algorithms for the determina-
tion of two positive real parameters. These new types of procedures are tested on a software of
determination of flame temperatures previously developed in a fully classic way. The genetic
operators used are crossover and mutation. They perform aperations on a hinary ended form of
the parameters. The goal of the present study consists in developing and optimizing a genetic
determination of the parameters at a given temperature, We succecd in selecting the general ar-
chitecture of the procedurc and implementing it in our main software of calculation of flame
temporatute, We hiave chosen this pyrotechnic field of upplication because we knew the behav-
iour of the real parameters, so the debugging operations were easier.

Keywords: binary coding parameters, calculation of flame temperature, computer program,
crossover, data processing, dissociative reactions, genetic algorithms, genetic opera-
tors, pyrotechnic reactions

Introduction

In the thermal analysis and calorimetry some algorithmic procedures are fre-
quently used in calculations for the determination of real parameters. The strategies
used for these calculations can be more or less classic (dichotomizing search, direct
mathematic resolution...), so more or less suitable for the problem studied.

In some cases it is very interesting to use less academic methods. In previous
studies we showed the great interest in using Artificial Neural Networks (ANNs)
in the determination of kinetic parameters in Differential Scanning Calorimetry

(DSC) {1, 2]. This is a direct application of Artificial Intelligence (AI}. Another
use of Alis represented by Genetic Algorithms (GAs).
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There are more and more fundamental studies on GAs; their real capacities
are not fully appraised, contrary to neural networks, whose principles of applica-
tion are now better known. We have not found publications describing the use of
GAs in the domain of DSC. The final goal of our carrent activities will be in two
steps.

1. Define, realize and set GAs adjusted for the determination of kinetic pa-
rameters issued from physical transitions in DSC.
2. Compare and appraise the efficiency of GAs and ANNs.

Nevertheless, in order to perform and control the behaviour of our GAs, we
decided to test them on a problem concerning the estimation of parameters
whose characteristics are well known and similar to those above. The present
work describes the work involved in this study.

We chose to include genetic procedures in a software of calculations of flame
temperatures of pyrotechnic reactions. An initial releasc was developed some
years ago for an industrial society. The method chosen to perform the calcula-
tions of flame temperatures requires at a given time the determination of 2 pa-
rameters which have a well known behaviour.,

In GAs there are no systematic methods for obtaining good solutions, but
rather a set of solutions which are explored and appraised simultaneously. The
production of this set of solutions requires a systematic approach. GAs can be
considered as a parallel approach to the resolution of a given problem. From this
point of view the methods of functioning involved by GAs are a specificity of the
evolutionist domain.

Method for flame temperature data processing

There are several methods of performing such a calculation. They have differ-
ent levels in complexity and ability. All of these methods use the theoretical
equation of the reaction. The most modern adiabatic methods are founded on
the minimization of the global Gibbs's energy and calculations of enthalpy
balances for the system. Unfortunately there are not many references on soft-
wares using this approach, we have noted that it is an optional possibility in
more general softwares dealing with chemical equilibria. The features for
these softwares (such as: Chemsage, Thermodata, Equilib, Thermo-Cale...)
can be frecly downloaded on the Internet nctwork by using a search engine such
as Alta Vista or Yahoo.

For the specific kind of reactions that we had to compute, we were given the
following goals:

— Combustion of hydrocarbons with possible inclusion of some materials.

— Creation of a database of thermodynamic properties for the whole species
involved in pyrotechnics (about 250).

— Taking into account the dissociation of CO, CO;, NO, NO», H,, H>O from
298 up to 5000 K.

J. Therm. Anal. Cal., 55, 1999
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For all these reasons we decided to develop a very simple method founded on
the manual method of Damkohler and Edse [3, 4]. The original features of the
improvements brought by our work were very satisfactory in comparison with
the requirements.

The basic principle of the calculations consists in making the heat of the reac-
tion equal to the global heat capacities of the products of the reaction. We will not
give details of the calculations in this paper [3]. However, Fig. 1 presents a gen-
eral view of the procedure:

The studied reaction

Tn order to test our genetic algorithms we have chosen the combustion of hep-
tane in oxygen. The theoretical equation is:

CHig+ 1102 = 7C0O: + 8H20

In fact the species such as CO; and H,0 are dissociating and giving species
such as 0,2, 0, Ha, H, OH, H,0, CO and CO,. The software knows the equilibrium
constants of the possible dissociations between 298 and 5000 K and it is able to
compute the partial pressures for the reaction products and thus the correspond-
ing real mole amounts of dissociated species. For that procedure the values of
some parameters must be set. In our example these values are the partial pressure
pH-O and the ratio pCO,/pCO. In order to check the computed partial pressures
two tests must be validated. For the above reaction the tests will be:

i) The sum of the computed partial pressures is equal to 1 (atmospheric pres-
sure),

ii) The ratio between the computed number of oxygen and hydrogen atoms
(rO/nH) is equal to the value given by user (1.375 for this reaction).

In the classic method of calculation initially developed the values of the two
parameters were proposed systematically.

If these (wo relations arc realized simultancously, this will mean that the cal-
culated partial pressures are true and that the values proposed by the software
were right. For the reaction above the flame-temperature is 3138 K, the pressure
pH,0 is equal to 0.269268 and the ratio pCO»/pCO is equal 10 0.589490. The one
problem is in fact to be able to propose the right values for these two parameters.
In order to better realise this problem we will represent as an example in a three-
dimensional space (x, y, z) the four quantities pH,O, pCO2/pCO, rO/rH and P.
The partial pressure pH,O is put on the X axis, the ratio pCO»/pCO on the ¥ axis
and the values of nO/nH as well as those of P on the Z axis (Fig. 2).

The sets of values of pressures P and ratios nO/rH determine two distinct ar-
cas above the plane (x, y). We drew a small part of it on the above picture (hatched
area). These two areas will cut the planes z=P=P, (Py: total pressure 1 atm) and

J. Therm. Anal. Cal., 55, 1999
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PaPt

Fig. 2 Three-dimensional view of calculations on partial pressures and #O/nH

z=n0/nH (for our example nO/mH=1.375) giving two curves (curve 1 and 2)
which will pass one above the other at a given time. This inevitable intersection
point corresponds to the real values of pH,0 and pCO»/pCO.

0 pCO2/pCO

NI

[RITH I

pHzO

1

Fig. 3 View of our previous systematic method of determination of the 2 parameters

Our initial procedure scanned the plane xOy by proposing incremental values
for pHLO and pCO./pCO according to a systematic methodology. The values of
the increments decreased owing to the error computed for the above i) and ii)
tests. This method was described in our previous work {3]. Figure 3 shows the de-
velopment of this systematic methodology. The right couple pH.O, pCQO./pCO is
indicated with an encircled cross.

‘The genetic approach

It is the above systematic methodology of determination of pH,O and
pCO,/pCO which is now replaced by GAs that we are going to describe below.
Basically GAs will run some processes of generation on a coded form of the
above two parameters in order to obtain new parameters. The mechanisms for the

J. Therm. Anal, Cal,, 55, 1999
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generation of the parameters draw one’s inspiration from biologic genetics proc-
esses for the duplication of chromosomes. This explains the designation ‘Ge-
netic Algorithms’ [5-91.

First, the GAs are going to code in an appropriate form (‘pattern’) the real val-
ues of the parameters, Secondly they must select into a set of coded parameters
(we said ‘population’) some couples of them (so-called “parents’), which will be
subjected to some genetic processes (usually ‘crossover’ and ‘mutation’). The
new parameters obtained (the ‘children’} replace their corresponding parents in
the population. The selection of the parents for the crossover is conducted as a
function of the error obtained for the calculations of the total P pressure and the
ratio pCO4/pCO. The weaker the errors on these calculations, the greater the
chance of the corresponding parameters of being selected. Thirdly, in order Lo
avoid the disappearance of certain patterns, some genetic mutations can be per-
formed on the whole population before starting calculations.

GENERAYION OF A
FIRST POPULATION
(n pattarns})
| ™)

ERROR DETERMNATION NEERTION OF NEW PATTERNS
FOR EACH PATTERN JN THE POPULATION

1
ERRORS S TREEHOLDS [ muration |
{ o i
[esrsmnac.] | CROSS-OVER |
[ 4

Fig. 4 Global chart for genetic processes

The totality of these processes represents a cycle, known as a ‘generation’, re-
peated until errors lower than thresholds given by user are obtained. Figure 4
shows the global chart of these processes.

Coding methods adapted to the problem studied

As we must work on an adapted form of the parameters, it is usual to code
them as a binary pattern, so we have chosen this method. However we specify
that it is not the only way to run genetic operators. This coding must be reversible
and computerized. Basically the binary coding consists in transforming each real
numeric value framed by a given interval, into a corresponding binary chain.

In a binary coding the tengths of the chains can be constant or not. For our ap-
proach we chose constant length which are easier to run. For current and future
values of the parameters studied, we have framed the interval of values between
—99 and +99, with an effective accuracy of 107'°. So we can code any value from
~99.9999999999 to +99.9999999999. This interval is oversized. The global
number of distinet valnes which must be coded is given by:

. Therm. Ancl. Cal, 55, (999
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r=2110° (1)

where r: number of possible real valuces, I: width sought for of the coding interval
(for us: 99), d: accuracy sought for (for us: 10).

Then our specifications will give r=1,98-10" distinct real potential vaiues. In
a classical problem ol binary coding we have the following scheme widely used
in computer science {Fig. 5):

765432 1 0=+—positlon Index of bits

1001011 Q«—n>binary pattern (6 bits}

—
width: 8 bits

Fig. 5 Locating of bits in a binary pattern

The width of the binary pattern is given by the very simple relation:
w=i+ 1 (2)

where w: width of the binary pattern, i: position index of the respective bits in the
pattern.
Then we can set the width of binary patterns with the relation:

LI 3)
logm r
| = _— = 4
i=logsr Togra 2 = 4085 (4)
then with Eq. (2)
w=41285 {5)

Then we can round w to 42. This means that 42-bits-chains Jong can be used
to code any value as defined with the relation (1). So as i=411 we can code up to
21=2,199.10" different values. We have developed procedures to perform de-
coding between real and binary patterns. As the values of the parameters are
strictly positive we decide to shift the coding interval from [-29, +99] to {0, 10&]
with exactly the same amount of binary patterns generated. In Table 1 we show
some real and corresponding binary values calculated by the coding procedure.

Table 1 Real and binary corresponding values

Rcal value Corresponding binary pattern
I 1.0000000000 000C000000 00G00G0000 0000000000 0C0A000N00 00
2 0.0000000001 00COB00000 HCO0O0ONOH D000000000 H0OB000000 01
3 99.0000000000 01060000000 00CR0A000C 000O00N0 HCEANHANNNN (N
4 197.999699999% OITIT1131E 1111111200 THRELE LTI 1101018111 11
5 198.0000000000 1000000000 0000000000 0000000000 00ON000000 00

J. Therm. Anal. Cal, 55, 1999
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The binary pattern n°5 (for 198 value) is very particular because it is the only
one which begins with the bit 1 and has forty-one following bits 0. This is a par-
ticularity of our coding choice in order to allow in the futurc real values higher
than 198 with minor modifications of the software. For the time being we will
never generate a pattern beginning with a bit 1 and having any other bits 1 else-
where in its chain.

The knowledge of the coding interval and the amount of binary patterns po-
tentially generated leads to the coding accuracy ac:

i

ac_gnxg.om-m*“ (6)

This accuracy means that the smaller interval between two consecutive real
values is a.: it is a satisfying value. To decode binary patterns into real values we
use an adapted form of a well known relation to obtain the relation (7) which is
used under a computerized form in our software:

41 .
Zmi-z‘

i=0
R=198—; (7)

where R: real value corresponding to a binary pattern, mi: binary value of the bit
whose position index is £ (=0 or 1), & position index of the bit m;.

The calculations work on two real parameters, so we had to choice between
coding cach parameter as a distinct binary chain (this supposes working with two
independent 42-bits-long binary chains), or coding and concatenating parame-
ters in a single 84-bits-long chain. For our experiments we never obtained con-
vergent results with two independent binary chains, so we decided in accordance
with a general opinion in this domain, to concatenate the two parameters in the
same coded chain. Then the first 42 bits are used to code the partial pressure
pH,0, and the last 42 bits to code the ratio pCOx/pCO. We have not found spe-

cific publications on this topic in the literature.

Size of population

GAs work on the evolution of a set of binary chains named ‘population’. The
number of chains per population is the population size. There is no mathematical
Taw to delerinine this, owing to the kind and the amount of parameters. It is only
an experimental appraisement founded on former work and personal test, which
allows the setting of correct values. A good compromise is needed between a
siall population having a good representation of the totality of the pertinent bi-
nary chains and bigger populations, perhaps more representative but requiring
more computer time. Usually, sizes of populations found in the literature are

J. Therm. Anal, Cal., 55, 1999



BRUNEL, ELEGANT: DATA PROCESSING OF FLAME TEMPERATURE 933

about 30 patterns. This is the value we have used. We also tested bigger popuia-
tions (50 patterns) but we never noted an improvement in performance. In both
cascs we sometimes had no convergence of the algorithms to a correct result.
This behaviour is not linked to the size of populations. We have not tested popu-
lation sizes lower than 30 patterns.

Generation of initial population

As presented above the proposed interval for the values of the parameters ol-
fered by our coding procedures is [arger than the current one required by the two
parameters. In order to start the first calculations an initial population of 30 pat-
terns must be generated. As we have not at the very outset a knowledge of the do-
main for the 2 parameters values, we developed a random procedure for the gen-
eration of the first population. The 30 binary 84-bits-long chains are built by con-
catening the equiprobable out of a random toss. The out values of a bit m; are O or
1 with the same probability p, so we have:

mp=x, wherep{x=0;x=1)=0.5 (8)

From a computing point of view, binary patterns can be considered as a one-
dimensional indexed array. So the building procedurc of an initial binary pattern
can be represented diagrammatically from an algorithmic point of view by

for j=1 to size population
for i=1to 84
pattern[f]-bit[i] = x
end {

endj
where: size_population: size of the population {for us 30}, j: number of the binary
pattern in the population, i: position index of the bit being generated, pat-
tern[j]-bit[i]: computerized structure allowing generation and storage of the bi-
nary patterns. This is a structure as defined in the C language. Then this structure
is the computerized form of the bit m;, x: binary value for the bit #; defined such
as p(x=0; x=1)=0.5.

The structure really implemented checks the conformity of the generated
chains with the specifications presented above. From a probabilist point of view
the first populations are globally constituted with the same amount of bits 0 and
. As the real values of the parameters are smaller than the offered interval, we
had to adapt a masking system when the chains have been generated.,

The binary masking system

The Fig. 6 shows the distributions of 4000 real values randomly generated
without mask by wsing our above procedure:

J. Therm. Anal. Cal,, 55, 1999
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30 +

Fig. 6 Distribution for a set of 4000 real values randomly generated from 0 up to 198

The lowest value generated is 0.06939654 and the highest one is 197.986953.
We note for this big set of values a relatively homogeneous distribution due to the
great amount of valucs generated (4000) and that very small value close to
(<107 will be very hard to generate. As we create populations with only 30 pat-
terns, this phenomenon will be emphasized. In Fig. 7 we show the frequencies
for one distriburion of only 30 real values randomly generated.

3. .
Frequencies of values

- a - o - e *rH o+ & *e e

Real values

Fig. 7 Frequencies of real values generated for one distributions of 30 patterns

We note that several areas are less concerned than others. In this example
there is no generated value close to 0, and there is only one value between 0 and
20. This phenomenon is normal owing to the width of the binary patterns gener-
ated and the small size of the population (30 patterns). In Fig. 8 we have super-
imposed the frequencies for 10 successive distributions of 30 patterns in order to
show that on a global set of patterns (10x30=300) the values generated again be-
comes more homogeneous.

As the GAs explore the whole binary coding space offered, we added a proce-
dure in order tn voluntary limit for our case the area for number generation. For
this we apply a mask directly on the binary patterns. Figure 9 schematically
shows the masking procedure.

J. Therm. Anal. Cal., 55, 1999
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Fig. 8 Frequencies of real values generated for 10 distributions of 30 patterns

As soon as the binary patterns are generated, a procedure transforms two n-
bits areas into the O bit (inverted areas in Fig. 9). The amount n can be set by the
user in the source code. For the time being the masking width is static, but we
think that a dynamic one will be more interesting and efficient.

parameter pH20 ‘_l B parameter pC0O2/nCO J
01011010100101111001041010101 0441010101004 10101 010101101010000101111010101101 00140
00000!}00 01 00000000! 10110401000010111101010110100110

MASK

Fig. 9 Masking of binary patterns

The necessity of masking can be more sensitive if number close to 0 must be
handled. In this case the mask must be wider.

The genetic operators

Operators are the most important part of genetic algorithms. They give an
evolutionist behaviour to the calculations. They start to work on the population
randomly generated such as those shown above. We used the two main operators:
‘crossover’ and ‘mutation’. The main running ot genetic algorithms is shown in
Fig. 4 and concerns many genetic applications in which we can find the follow-
ing basic steps:

1. Generation of a first random population
2. Performance testing for each pattern of the population (end of program if
the performances are good enough}
3. Selection of couples of patterns owing to their good performances
4. Performing of genetic operators:
* Crossover on selected patterns
¢ Mutations on the entire population
5. Insertion of new patterns in the population and going to the step 2.

J. Therm. Anal. Cal., 55, 1999
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The crossover

This is the best known operator. Its name comes from an analogy with the
biologic chromosomes duplication. Its fundamental steps are schematised in
Fig. 10.

Parent 1 Pe .
LT LR TS LR LT R DL R R L [T 1041001101000000001101011010110104001101018100101100

Parent 2
Lt R ST B SRR R DR IR VY 010710100110000000001011610 1000010 1111010101101081104

CROSSOVER

Child 1
e T0101000 1000000000 10110101000010111101010110100 101
Child 2

Lo DI LR LR B D R LA 3] 1011001 10 1000600001101014010110101004104010100101100

Fig, 10 Schematic performing on two parent patterns

The PC index represents the position from which the crossover is performed.
The most important part for this genetic operator is the pertinent selection of the
couples of patterns concerned by crossover. These couples of patterns are se-
lected owing to their performances. To perform the evaluation of the pattern’s re-
spective performances, we consider the errors induced by the two parameters on
the calculations on the total pressure P and the ratio nO/nH. We can postulate that
the weaker the errors in these calculations, the greater the probability that the se-
lection of the corresponding patterns will be stronger. So in order to materialize
this probability we determine {or each patiein j an accuracy factor named ‘pro-
bay’ such as:

1 (9)

(errp + errn)iprobcum

probaj =

where proba;: factor accuracy for a pattern j, errp, errn: respective errors in-
duced by the pattern on the calculation of the total pressure P and the ratio
#Q/nH, probcum: cumulated probability of the patterns for the entire population.

This quantity can be considered as a total fitness of the population, j: number of
a pattern in the population.

The cumulated probability ‘probcum’ is defined as:

size pep

probeum = 2 -————1——] (10}

errp + errn
. i

To perform the selection of probabilist patterns the software generates a ran-
dom series of size pop=30 numbers included in [0, 1], and then for each value of

J. Therm. Anal. Cal., 55, 1999
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the series a pattern of the population which has the value immediately above it
will be selected. Consequently we generate a temporary population in which the
better patterns have a greater appearance-fiequency than others. The very *bad’
patterns will not appear in this temporary population. Next a second random se-
ries of size pop probabilities is generated, then we select the corresponding pat-
tern if its factor of accuracy ‘proba;’ is smaller that a given probability. Usually
this threshold is 0.25; then we expect that (on average) 25% of patterns undergo
crossover. As this selection must concern couples of patterns, the software will
remove one pattern to obtain an odd set. The matching of patterns and the posi-
tion PC for crossover are randomly performed. When the crossover is completed
the generated ‘child’ patterns replace their respective ‘parents’ in the original
population,

The mutation

As soon as the crossover is performed the mutation operator starts. It con-
cerns the entire population. Its principle consists in randomly altering some bits
of the population. Usually 1% of the bits is expected to mute. As for us a popula-
tion is composed with 84-30=2520 bits, we will have a maximum of 25 bits
which undergo mutation. Considering our specifications we decide not to allow
mutation on the first bits of the patterns because this would involve the setting of
all the others bits to 0 in order to generate the number 198.0000000000 (cf Ta-
ble 1). The probability of generation of this exact quantity is very weak. The fun-
damental goal of this operator is to avoid definitive disappearance of binary pat-
terns which could produce good ‘children’ is a future generation. Moreover the
mutation has the ability to spontaneously create a very good pattern. This ap-
proach can be considered as the simulated annealing procedure which can be em-
ployed in other uses of the artificial intelligence in order to avoid local minima.
This operator creates local disorders favourable to the appearance of solution
patterns.

The masking procedure described above and applied to the initial randomly
generated population is then also applied after the mutation operator in order to
respect the global format of the binary patterns.

When the masking procedure is achieved, the new population obtained is
ready for the next calculations of error. The entire cycle is named ‘generation’.

Computing sights

Most of the currently existing softwares performing GAs are developed in an
academic goal. [t would be very time-consuming to adapt these kinds of products
to our problem. So we decided to develop all of the computing procedures. The
initial software for calculation of the temperature of flames was developed in
BASIC some years ago. Then we had first to develop a C language release of this

J. Therm. Anal. Cal., 35, 1999
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product. We also had to develop a tool to manage and use the database of thermo-
chemical properties initially created. All these developments were realized on
PC (Pentium 133 MHz) computers with Borland C. The final C software was
successfully tested and gave identical results with a better efficiency than the Ba-
sic release, as was natural, This release did not include genetic procedures, so it
is this C soltware that we have modified in order to perform genetic algorithms.,

The program handles coded parameters by means of structures plainly speak-
ing in the strict sense of C language. It would be possible to use an object-ori-
ented method in C++. In these C structures, which we named ‘chromosome’,
there are different fields in order to memorize:

o The number of the binary pattern in the population

s The binary chain itself

» The numerical values corresponding to the 2 parameters
» The errors induced for each parameter

¢ The efficiency (accuracy) of the pattern

o The total efficiency for the entire population

So this structurc defines a computing type. A patterns population is thus de-
fined as a structure composed with n above structures and which represents a
population (# is the size of the population, for us n=30). For each important step
in the life of & binary-patterus pupulation we handle a corresponding structure.
So we have:

s Aninitial structure. This is the reference structure of the population used to
perform the error calculations and run the genetic operators.

» A buffer structure. As its name indicates this structure is suitable to handle
temporary populations during calculations.

» A storage structure used to perform crossover on couples of patterns.

® A temporary structure used to perform mutation and masking procedure.

The binary patterns can be stored on hard disk in order to trace the cvolution
of a population during the debugging phase.

To develop the genetic release of the initial program of temperature the new
geuelic procedures were included in the source code of the program of calcula-
tion of temperatures, so the prior classic ones have been removed. As the goal of
the present work is to validate the procedure of resolution of the pH>O and
pCO/pCO parameters (or a given temperature we do not perform the iterative “di-
chotomic’ process on proposed successive temperatures shown in Fig, 1, For the
current study the software runs all the genetic operators for a single temperature
given by the user in order to test their convergence on the combustion of heptane.

User interface

When the program is started the user specifies the features of the reaction
studied by choosing in the database all the species concerned, entering their re-

I Therm. Anai. Cal., 55, 1999
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spective stoechiometric coefficients, the reaction family (to be chosen among 6)
and some additional numerical parameters such as for example atomic ratio
#O/nH and total pressure F. When this text-form input is achieved the software
passes into fully graphic mode, then starts the calculations.

optonal bimnf outwl/
Wed Aug 77 10:47:001 mrv/ valu

1= 1.3336730481 p= i.e497317071 m
Hambre total de gen: 15 BUOwRa

Humaro du motit current “ﬂm"{
FRECISION- 8,050 ‘\/Tsnumw

abso/

Fig. 11 Three dimensional output of the graphic interface

In order to monitor the evolution of calculations a user-graphic 3D-interfac-
ing was fully developed. We show in Fig. 11 an output view of this interface when
convergence of the GAs is obtained.

On the screen are displayed:

» The values of the two parameters being evaluated. They are noted III, JJJ
and represent respectively pH.D and pCO/pCO.

¢ The values of the test parameters which are the total pressure P and the
atomic ratio nO/rH.

¢ Some parameters such as the number of the current generation, the numher
of the binary pattern which succeeds in the above tests, the precision required by
the user, the temperature for which the calculations are conducted.

* The couples of proposed parameters pH,O and pCO./pCQO. They are graphi-
cally represented by pixels. The graphic procedures were developed in order to
display a 3D output of the evolution of the calculations.

The user can stop the program at any time. Moreover in order to check the
behaviour of the patterns the user can optionally display their binary structure
in the upper left window of the display. As this procedure is very time-consum-
ing it was not systematized.

Experimental results

To pertorm genetic algorithms there are numerous parameters to be taken in
account, but well-known methods of choosing, determining or making an inven-
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tory of them for a given problem do not yet exist. At the moment only experi-
ments allow tests on the convergence of the genetic operators owing to the evolu-
tion of a population. In our very particular case of real positive and thresholded
quantities determination we tested the GAs by studying some parameters:

The coding mode for parameters

As we said above, for the determination of several parameters it is possible to
code them with distinct binary patterns or o concatenate them in a single binary
chain. We conducted preliminary experiments with two separated 42-bits-long
chains for each parameter. So the genetic procedures ran the operators inde-
pendently on the two distinet populations. In that case we never obtained a con-
vergence of the algorithms. We saw that it was impossible to have two accurate
different populations simultaneously. This phenomenon can be explained be-
cause as we have no physical association of the binary forms of the two parame
ters, it is impossible to control the influence of the correction lead by the genetic
evolution on each population. At a time 7 one population can given a good accu-
racy and the other pupulation can have a less good onc, so the genetic operators
(such as the mutation operator) can randomly deteriorate the accuracy of the bet-
ter population, and then the test will not succeed. As the GAs have a random be-
haviour it is not possible to lock together two accurate populations.

So, as described above, we coded the two parameters with a single 84-bits-
long binary pattern, then we obtained convergence. In this case the patterns are
physically associated, so the evolution processes are going to concern the total-
ity. The optimization of their performances is linked.

The size of the population

This is an important parameter which defines the namber of binary patterns in
a population, No method exists to set this size according to a given problem.
There is a compromise to be found between a good accuracy induced by a large
population and the corresponding time consumed. In fact this size must deter-
minc a population large enough to be representative of the problem studied, and
small enough to lead a reasonable data processing time.

According to the literature and to general opinion of searchers in this area, we
set population size to 30 binary patterns. So the global binary size of a population
is 84-30=2520 bits. We have conducted some tests with bigger sizes (50 patterns)
but we have never noted better performances, We did not test smaller sizes. All
the tests were conducted on a PC Pentium computer runuing at 133 MHz.

Behaviour of the genetic operators for different temperatures

The calculated flame temperature given by the first developed software is
3138 K. We have performed some tests in order to test only the capability of the
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genetic algorithms to converge for a given temperature. For these tests the stan-
dard parameters were:

Size of the population: 30 patterns

Accuracy: 5%

Rate of mutation: 1%

Table 2 shows the number of generations performed according to a given tem-
perature.

Table 2 Number of gencrations according to a given temperature

Temperature/K Number of generation _Time-calculation/s
4500 168 6.05
3500 187 6.73
3138 43 1.55

As the GAs converge in this range of temperatures we decided to study the in-
fluence of some parameters on the behaviour of results for a given temperature,

Behaviour of the genctic operators for a given temperature

We studied the influence of the accuracy and the rate of mutation on the be-
haviour of the calculations for a given temperature. We selected the flame tem-
perature 3138 K because our procedures must have a very good behaviour for
this temperature, If no, it will not be useful to test GAs for other temperatures,
There are two very interesting parameters;

» The accuracy: this quantity (which is set by the user) represents in fact the
absolute error between the parameters calculated by the software and the user’s
ones. As these values are close to 1, the accuracy can be considered as an error
percentage.

e The rate of mutation: this parameter is also set by the user. It represents the ca-
pability of the GAs to explore new parameters values on a probabilist way. We think
that the influence of this parameter is very important on the behaviour of the GAs.

These parameters can be easily set in the source code before compilation.
Two quantities characterize the efficiency of the procedures developed:

* The number of no-convergence: to determine this quantity we tested our
algorithms in series with identical parameters. The number of tests in a series
in 32 (25), then we count the no-convergence of the algorithms. For us there is
no-convergence if the GAs need more than 10 000 generations to satisfy the
tests (10000 generations represent about 6 min).

s The time-calculation: when we have convergence the time needed to satisfy
the tests is a good indicator for the efficiency of the GAs.
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Table 3 Number of no-convergence according to accuracy and mutation

N experiment Accuracy/% Mutation/% No-convergence
1 5 1 0
2 3 1 4
3 1.5 2 3
4 1.3 3 1
3 1.5 4 ¢
6 1 4 0
7 1.5 1 22
8 1 3 1
9 4 | 0

10 3 2 0
11 0.5 4 0
12 0.5 3 1

Table 3 summarizes at 3138 K the number of no-convergences of the AGs ow-
ing to the accuracy and the rate of mutation. The initial values were 5% for the ac-
curacy (absolute error 0.05) and 1% for the rate of mutation. Our methodology was
to explore couples of values (accuracy, mutation) in order to give a global sight of
the efficiency. The experiments were numbered in their chronological order.

We saw from Table 3 that the best efficiency is for high values of accuracy or
mutation. This is a normal phenomenon. The worst performance was for small
values of accuracy (1.5%) and mutation (1%). As the goal is to obtain conver-
gences with a good accuracy, we recommend to choose a correct accuracy (for
example 1%} and try different rates of mutation from a small value (such as 1%)
up to the smallest possible value which give 0 no-convergence. For our experi-
ments 4% for the mutation gave O no-convergence with the wanted accuracy (1%).

When this procedure was correctly achieved we tried with the same mutation
(49), a smaller valuc for the accuracy (for example 0.5%). Doing that we alco
obtained 0 no-convergence. Then for the same value of the accuracy (0.5%)
smaller values of mutation can be tested. We tried 3% for the mutation with 0.5%
for the accuracy but we got one no convergence. So for our experiments the best
couple of values for the accuracy and mutation was (0.5%, 4%). Note: In order to
become finer it is possible to use no-entire values for the rate of mutation, but we
have not tried that.

Other parameters such as the rate of crossover or the width of the binary
masking could be studied, and will be the object of our future work.

With the best experimental conditions we have summarized in Table 4 the er-
rors calculated for the calculation of the proposed parameters (pH,O and
pCOy/pCO}Y, and for the tested parameters (nQ/nH and the total pressure P).
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Evaluation of the performances

We note in Table 4 that the smallest minimum error ((0.0023%) on a result is
given for pCO»/pCO with accuracy=1% and mutation=4%. The smallest average
error (0.1951%) and the smallest maximum error (0.3593%) on a result are given
for nO/nll with accuracy=0.5% and mutation=4%_ These are very good values, and
we note they are brought with the rate of mutation=4%._ That is normal because this
rate of mutation allows the choice of a very satisfying accuracy (0.5%).

Table 4 Errors on calculated parameters according to experimental conditions

Conditions Error pPHO/%  pCO/pCOI%  nOmB/% Pi%
Accuracy: 4% average 0.7185 0.8872 0.3829 0.4641
Mutation: 1% min 0.0367 0.0166 0.0405 0.0477
max 1.9919% 2.5642 0.7251 (0.9935
Accuracy: 3% average 1.6426 2.0586 1.4246 1.5536
Mutation: 2% min 0.0154 0.0909 0.5934 0.0105
max 4.4586 39023 2.1211 29124
Accuracy: 1.5% average 1.0394 1.0235 0.4429 0.9130
Mutation: 4% min 0.0263 0.0337 0.0044 0.0259
max 2.1619 2.6047 1.0545 1.4893
Accuracy: 1% average 0.8172 (.7393 0.4011 0.4780
Mutation: 4% min 0.0149 0.0023 0.0352 0.0441
max 1.8572 2.1026 0.7188 0.9543
Accuracy: 0.5% average 0.5279 0.9193 0.1951 U.3031
Mutation: 4% min 0.0484 0.281¢9 0.0140 0.0194
max 1.2067 1.5744 0.3593 0.4856

The worst average error (2.0586%) and maximum error (3.9023%) are given
for pCO/pCO with accuracy=3% and mutation=2%. The worst minimum
(0.5934%) is given for nQ/nH with accuracy=3% and mutation=2%. These are
relative good performances.

For the next study about the time consuming according to the experimental
conditions, we have chosen to work with smaller series of calculations, in order
to reduce the global time-calculation. This will be necessary when our genetic
procedures will be included in the real iterative procedure of determination of the
flame-temperature.

We decide to work with new series of 8 tests (2°), which represent 25% of the
former series.
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Time consuming according to the experimental conditions

We have generated 3 new series with mutation=4% and accuracy=1 5%, 1%
and 0.5%. For each series we have measured the calculation time. As expected we
had not no-convergences in these series. Tables 5, 6 and 7 summarize these features.

I'or these §-test-serics we note that the average of the caleulation time for one
generation is about 0.038 second, and the average of the global time for each test
is between about 10 and 30 s. The longer calculation time (29.52 s) is given for
the best accuracy (0.5%), but tie faster time (10 s) is not given by the worst accu-
racy (1.5%). It is because in each series we can have very different numbers of
generations. To improve the homogeneity of the values we can for example de-
cide to select the six smaller numbers of generations in each 8-test-series. In this
case Tables 8, 9 and 10 show the new series.

Table § Calculation time lor accuracy=1.5% and mutation—4%

Number of generations Time of calculation/s Time/generation/s
1 17 0.66 0.0388
2 13 0.49 0.0377
3 23 0.83 0.0361
4 14 0.35 0.0393
5 15 .61 0.0407
0 2008 74.75 0.0372
7 30 1.1 0.0367
8 1164 43.33 0.0372
average 410.5 15.29 0.0380

Table 6 Calculation time for accuracy=1% and mutation=4%

Number of generations Time of calculation/s Time/generation/s
1 35 1.32 0.0377
2 56 2.14 0.0382
3 1730 64.43 0.0372
4 106 10986 0.03741
3 22 0.82 0.0373
6 24 0.88 0.0367
7 77 2.85 0.0370
8 97 3.63 0.0374
average 268,375 10.00 0.0374
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In these new 6-test-series the average of the global time for each test is now
between 0,71 and 2.39 sec. We can now note that the smallest average is associ-
ated with the worst accuracy and the largest onc is associated with the best aceu
racy. That is a normal correlation.

Table 7 Calculation time for accuracy—0.5% and mutation=4%

Number of generations Time of calculation/s Time/generation/s
1 12 0.5 0.0417
2 159 5,98 0.0376
3 165 6.21 0.0376
4 45 [ 0.0378
5 82 3.07 0.0374
6 44 1.65 0.0375
7 5770 215.59 0.0374
8 a8 1.43 (.0376
average 789.38 29.52 0.0381

Table 8 Cateulation time for accuracy=1.5% and mutation—4%

Number of generations Time of calculation/s Time/gencration/s
1 17 0.66 0.0388
2 13 (.49 0.0377
3 23 (.83 0.0361
4 14 .55 0.0393
5 15 0.61 0.0407
6 30 1.1 0.0367
average 18.67 0.71 0.0382

Table 9 Calculation time for accuracy=1% and mutation=4%

Number of generations Time of calculation/s Time/generation/s
1 33 1.32 0.0377
2 56 2.14 0.0382
3 22 0.82 0.0373
4 24 0.88 0.0367
5 77 2.85 0.0370
6 97 3.63 0.0374
average 51.83 1.94 0.0374
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Table 10 Calculation time for accuracy=0.5% and mutation=4%

Number of generations Time of calculation/s Time/gencration/s
1 12 0.5 0.0417
2 159 598 0.0376
3 43 1.70 0.0378
4 82 3.07 0.0374
5 44 1.65 0.0375
6 38 1.43 0.0376
average 63.33 2.39 0.0383

In order to use the values of the parameters calculated in the final iterative
procedure of determination of the flame-temperature we recommend then to se-
lect in a series the test which give the smallest error.

Conclusions

In this work we successfully tested the ability of genetic operators for the de-
termination of real parameters used in the data-processing of flame-temperature
of pyrotechnic reactions. Our goal was to validate the use of genetic operators at
a given temperature for the combustion of heptan in air.

We obtained very good convergences of the genetic algorithms. The next
steps of our study will consist in testing the iterative ‘dichotomic’ method for the
proposed successive temperatures. As the scale of the parameter depends on the
proposed temperature, we think it will be necessary to perform a dynamic mask-
ing of the binary patterns.

This original notion will be useful for the determination of parameters from
DSC curves. For this experience we have developed a gaussian signal generator
whose characteristics are compatible with our genetic procedures. Their imple-
mentation will be facilitated.

Our work validates the use of genetic operators in order to replace more clas-
sical determination methods. The random and probabilist behaviour of the ge-
netic operators allows avoidance of possible local minima. Nevertheless an opti-
mization of some features, as for example the size scale of the parameters gener-
ated is necessary to avoid some divergences of the algorithms more systemati-
cally.
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